Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Practical Oncology Journal ; (6): 250-253, 2018.
Article in Chinese | WPRIM | ID: wpr-697942

ABSTRACT

The JMJD family is an important group of histone demethylase. JMJD2B belongs to one of its family members,and is a JMJD containing a JmjC domain. It mainly regulates chromatin structure,transcription and cell appearance. Recent studies from domestic and foreign have demonstrated that JMJD2B protein is high expressed in human malignant tumors,such as liver cancer,gas-tric cancer,breast cancer,kidney cancer,and skin cancer. Moreover,it also shows that JMJD2B is involved in the occurrence,develop-ment,migration,infiltration,and proliferation of malignant tumors.

2.
Chinese Journal of Thoracic and Cardiovascular Surgery ; (12): 104-109, 2018.
Article in Chinese | WPRIM | ID: wpr-711730

ABSTRACT

Objective To observe the evolution of astrocytes,GDNF,BDNF and Jak-STAT signal pathway after spinal cord ischemia-reperfusion injury in rabbits.Methods Spinal cord ischemia was induced by means of balloon occlusion of the infrarenal aorta for 22 minutes in 54 male New Zealand white rabbits.We assigned rabbits to 9 groups (n =6),one sham group,eight operation groups.The operation process in the sham group was the same as the operation group except the ischemia reperfusion of the spinal cord.At 0 h,1 h,2 h,3 h,8 h,24 h,48 h and 72 h after reperfusion,animals were sarcrificed and the spinal cord was removed for histologic,immunohistochemical study and western blotting.Results Normal neurons were decreased with the extension of reperfusion time.Levels of GFAP increased at 3 h and reached a peak at 48 h after reperfusion.GDNF was increased reaching two peaks after injury,the first peak was at 3 h,the second was at 72 h.BDNF level was increased and peaked at 24 h after reperfusion.The expression of p-STAT3 showed a biphasic pattern which peaked at 1h and 48 h.GFAP,GDNF,BDNF were rare and the level of p-STAT3 could be neglected in sham group.Conclusion Spinal cord ischemia-reperfusion injury could induce the activation of astrocytes,the expression of GDNF,BDNF and the activation of JakSTAT signal pathway.They showed different expression rules in this study.

3.
Chinese Circulation Journal ; (12): 395-400, 2017.
Article in Chinese | WPRIM | ID: wpr-513848

ABSTRACT

Objective: To observe the activation of microglia and the changing rule of inflammatory cytokine as IL-6, IL-10 and nuclear factor-κB (NF-κB) in experimental rabbits after spinal cord ischemia reperfusion (SCIR) injury in order to provide theoretical basis for post-conditioning time. Methods: Rabbit SCIR injury model was established by thoracic aorta balloon occlusion. 54 New Zealand male adult white rabbits were divided into 9 groups: Sham group (the animals received balloon implantation without occlusion), SCIR-0h group (reperfusion was conducted at 0 hour of spinal cord ischemia), SCIR-1h, -2h, -3h, -8h, -24h,-48h and -72h groups. n=6 in each group. The number of normal and apoptosis neurons, the levels of Iba-1, IL-6, IL-10 and NF-κB in spinal tissue were examined and compared among different groups respectively. Results: The number of normal neuron was decreasing with the extended reperfusion time, TUNEL-positive neuron began to increasing in SCIR-8h group and the peak was reached in SCIR-24h group. The expression of Iba-1 began to elevating in SCIR-2h group and the peak was obtained in SCIR-8h group; NF-κB began to rising in SCIR-3h group and the peak was observed in SCIR-8h group; both IL-6 and IL-10 arrived the peak in SCIR-24h group. The expressions of NF-κB, IL-6 and IL-10 were positively related to Iba-1 level. Conclusion: Microglia activation had dynamic changes in experimental SCIR rabbits and the expression levels of NF-κB, IL-6 and IL-10 were positively to microglia activation; post-conditioning time at front and back to microglia activation may reduce neuron injury.

4.
Chinese Journal of Biotechnology ; (12): 104-115, 2012.
Article in Chinese | WPRIM | ID: wpr-304508

ABSTRACT

Cloning of flanking sequences of double-copy gene is a challenge in molecular biology. We developed a method to solve this problem by combining an optimized inverse PCR (iPCR) with TAIL-PCR. First, Southern blotting analysis was used to determine a proper restriction enzyme that could obtain proper-length restriction fragments that contained the target gene. Then optimized iPCR was performed to amplify the restriction fragments that contained the separated copies of the gene. Based on the obtained sequences, TAIL-PCR was performed to amplify further flanking regions of the gene. With this method, we obtained all of the EcoR I restriction fragments (2.2-5.1 kb) and Hind III restriction fragments (8.5-11.7 kb) of mitochondrial atpA gene in cytoplasmic male sterile (CMS) line and maintainer line of Upland cotton. The results showed that this method was an efficient approach to clone flanking sequences of double-copy gene.


Subject(s)
Chromosome Walking , Cloning, Molecular , Gene Expression Regulation, Plant , Genes, Mitochondrial , Genes, Plant , Genetics , Gossypium , Genetics , Plant Proteins , Genetics , Metabolism , Polymerase Chain Reaction , Methods , Terminal Repeat Sequences
SELECTION OF CITATIONS
SEARCH DETAIL